QUAIL: Quantum Artificial Intelligence Laboratory
The goal of Dr Roberto Bondesan’s research is to understand how quantum computing and machine learning can help solve hard computational problems that occur in science and engineering, such as combinatorial optimization problems and the simulation of quantum systems. From finding the shortest route across cities, to finding the best way to design a complex system on a chip, combinatorial optimization problems are ubiquitous in the real world, while the efficient simulation of quantum systems will aid the discovery of new molecules and materials, with applications to drug design and sustainability.
Quantum computers can simulate quantum systems exponentially faster than classical computers and can speed up the solution to combinatorial optimization problems. Dr Bondesan’s team studies novel quantum algorithms and the challenges of deploying quantum algorithms to hardware, such as quantum error correction.
ML algorithms can learn automatically from data to approximate the solution to optimization and quantum physics problems. Data in these domains is however scarce and expensive, and Dr Bondesan’s team focuses on data efficient learning for these applications, from the design of equivariant neural architectures, to model based reinforcement learning, to neurally-augmented Monte Carlo simulations.
...
The goal of Dr Roberto Bondesan’s research is to understand how quantum computing and machine learning can help solve hard computational problems that occur in science and engineering, such as combinatorial optimization problems and the simulation of quantum systems. From finding the shortest route across cities, to finding the best way to design a complex system on a chip, combinatorial optimization problems are ubiquitous in the real world, while the efficient simulation of quantum systems will aid the discovery of new molecules and materials, with applications to drug design and sustainability.
Quantum computers can simulate quantum systems exponentially faster than classical computers and can speed up the solution to combinatorial optimization problems. Dr Bondesan’s team studies novel quantum algorithms and the challenges of deploying quantum algorithms to hardware, such as quantum error correction.
ML algorithms can learn automatically from data to approximate the solution to optimization and quantum physics problems. Data in these domains is however scarce and expensive, and Dr Bondesan’s team focuses on data efficient learning for these applications, from the design of equivariant neural architectures, to model based reinforcement learning, to neurally-augmented Monte Carlo simulations.
Read More